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A bilayer lens is proposed based on transformation optics. It is shown that Pendry’s perfect lens, perfect
bilayer lens made of indefinite media, and the concept of compensated media are well unified under the scope
of the proposed bilayer lens. Using this concept, we also demonstrate how one is able to achieve perfect
imaging beyond passive objects or active sources which are present in front of the lens.
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The form-invariance property of the Maxwell’s equations
in any coordinate system1–3 provides us a convenient guide-
line to design the so-called transformation media for control-
ling electromagnetic �EM� fields or light in an unprecedented
manner. In this design methodology, a coordinate transfor-
mation function describes the desired trajectory of EM field
in a direct geometrical meaning,2 and it determines the ma-
terial parameters of the transformation media by tensor
rules.1,2 The most intriguing application of the theory is in-
visibility cloak, as proposed by Pendry et al.1 and Leonhardt
et al.3 in their preliminary works. Since then, this particular
field of study, referred to as transformation optics, has re-
ceived intense attention from the optics community. We have
so far observed a surge of theoretical discussions4–9 and even
experimental efforts10 related especially to the cloaking sub-
ject. Apart from invisibility cloaks, some other novel appli-
cations of transformation optics, such as beam shifters and
splitters,11 field rotation,12 and electromagnetic wormholes,13

have been proposed.
In Ref. 8, it is shown that a Pendry’s perfect negative-

index-material �NIM� slab lens14 with n=−1 can be inter-
preted by transformation optics. In particular, the lens body
together with its free space background can be considered as
transformation media obtained from a coordinate transforma-
tion of free space based on a folded mapping function. Fol-
lowing this strategy, a perfect cylindrical �spherical� shape
lens can be designed by deploying a folded radial spatial
mapping in a cylindrical �spherical� coordinate system.15 On
the other hand, Pendry’s perfect slab lens can be understood
as a special example of compensated media.16 In this Rapid
Communications, by studying a transformed bilayer struc-
ture, we notice that transformation optics provides a clear
physical interpretation of such compensated media; the com-
pensated media are just special examples of the transformed
bilayer structure. Thus, we can define a generalized concept
of compensated media, which well unifies Pendry’s slab lens
and the indefinite media lens proposed by Smith et al.17,18

Based on this understanding, we show that perfect imaging
can be realized even when passive obstacles or active emit-
ters are obstructing our object to be imaged.

Consider a coordinate transformation which transforms a
single slab structure placed in EM space into a bilayer slab
structure, as illustrated in Fig. 1. The single slab structure in
EM space has relative permittivity � and relative permeabil-

ity �, and may contain active sources denoted by J̄ and �.

The transformation function is also illustrated in Fig. 1. It is
seen that the region z�� �d ,e� in EM virtual space trans-
forms into two regions z� �a ,b� and z� �b ,c� in physical
space following transformation functions z�= f�z� and z�
=g�z�, respectively. The two transformation functions have
the boundary conditions f�a�=g�c�=d and f�b�=g�b�=e.
The material parameters as well as sources in the trans-
formed layers, denoted by layer I and layer II, can be ex-
pressed as1,2

�1 = det�� f�−1� f�� f, �1 = det�� f�−1� f�� f , �1�

�2 = det��g�−1�g��g, �2 = det��g�−1�g��g, �2�

J̄1 = det�� f�−1� fJ̄, �1 = det�� f�−1� , �3�

J̄2 = det��g�−1�gJ̄, �2 = det��g�−1� , �4�

where “det” represents the determinant of a matrix, � f
=diag�1,1 ,1 / f��z�� and �g=diag�1,1 ,1 /g��z��, f�=df /dz,
and g�=dg /dz.

If the fields in layer I are denoted by Ē1�x ,z� and H̄1�x ,z�,
based on transformation optics, the fields in layer II should
be related to the fields in layer I by

Ē2�x,y,z� = diag�1,1,g��z�/f��zm��Ē1�x,y,zm� , �5�

H̄2�x,y,z� = diag�1,1,g��z�/f��zm��H̄1�x,y,zm� , �6�

where z� �b ,c� and zm� �a ,b� correspond to the same z�.

At boundaries z=a and z=c, we have Ē2�x ,c�
=diag�1,1 , f��c� /g��a��Ē1�x ,a� and H̄2�x ,c�

FIG. 1. �Color online� Illustration of a bilayer slab structure
obtained by coordinate transformations from a single slab layer.
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=diag�1,1 , f��c� /g��a��H̄1�x ,a�. Therefore the tangential
fields at z=a and z=c two boundaries have the same values.
The left and right outside backgrounds appear as connecting
each other directly. Here, we note that this phenomenon is
independent of the background material choice, or whether
active sources are involved in transformation. Effectively,
the two boundaries z=a and z=c of the bilayer are perfect
duplicates of the z�=d boundary of the original slab. Thus, if
the bilayer is put into a homogenous background, the fields
will perfectly tunnel through the bilayer without any reflec-
tion.

Now we examine the material properties of such a bilayer
lens in general. Consider that transformation functions are
linear functions with slopes being p1 and −p2, respectively,
where p1p2�0. Thus, the thicknesses of layer I and layer II
�denoted by L1 and L2, respectively� relate to each other
by L1=�L2, where �= p2 / p1. Observing Eqs. �5� and �6�,
we have �2�x ,y ,z�=−�diag�1,1 ,−1 /���1�x ,y ,zm�diag�1,1 ,
−1 /��, �2�x ,y ,z�=−�diag�1,1 ,−1 /���1�x ,y ,zm�diag�1,1 ,
−1 /��, where z and zm are defined as the same as in Eqs. �5�
and �6�. When �=1, the above equations describe exactly the
complementary media proposed by Pendry in Ref. 16.
In particular, �2�x ,y ,z�=−�1�x ,y ,zm� and �2�x ,y ,z�
=−�1�x ,y ,zm� if ��1,2� and ��1,2� are diagonal matrices. As
discussed in Ref. 16, the bilayer composed by two compli-
mentary layers with the same thickness can transfer EM
fields perfectly from one interface to the other. Here, we
show that transformation optics facilitates simple and clear

geometrical interpretation of the perfect lensing phenomenon
of such complementary media. In fact, bilayer structure as
complementary media can be extended to the following situ-
ations: �1� ��1, and/or �2� f�z� and g�z� are nonlinear func-
tions, and/or �3� active sources are embedded in the bilayer.

As special examples, here we show how the transformed
bilayer lens can encompass Pendry’s perfect lens as well as
the bilayer indefinite media lens proposed by Smith et al.
Consider the single slab in EM space is homogenous. With
linear coordinate transformations, the individual layers of the
corresponding bilayer in physical space are therefore also
homogenous. If the parameters of layer I are denoted by �1
=diag��1x ,�1y ,�1z� and �1=diag��1x ,�1y ,�1z�, the param-
eters of layer II are �2=−diag��1x� ,�1y� ,�1z /�� and �2=
−diag��1x� ,�1y� ,�1z /��. Consider Pendry’s perfect lens
with �1=�1=−1,14 which is located in z� �0,S� and is put in
free space background. The imaging process of this lens can
be understood easily if we interpret the system as two con-
nected bilayer structures where bilayer 1 with �1=−�2=1,
�1=−�2=1, and �=1, and bilayer 2 with −�1=�2=1, −�1
=�2=1, and �=1, as illustrated in Fig. 3�a�. Referring to the
figure, one perfect image will be formed through perfect field
tunneling by bilayer 1. Then, through field tunneling by bi-
layer 2, the second perfect image is constructed in free space.

Furthermore, consider the single slab in EM space is
made of indefinite medium. Subject to linear coordinate
transformations, the corresponding bilayer is composed by
homogenous indefinite media where the material tensors
��1,2� and ��1,2� have both positive and negative components.

x/λ

z/
λ

−6 −4 −2 0 2 4 6

−2

0

2

4

6

(a)
Max

−Max

−3 −2 −1 0 1 2 3
0

0.2

0.4

0.6

0.8

1

x/λ

In
te

ns
ity

With bilayer
Without bilayer

(b)

FWHM=0.28λ

FIG. 2. �Color online� �a�
Electric field distribution for a
line current source Js=A	�z
+0.01
�	�x� interacting with a bi-
layer lens located in z� �0,4
�;
�b� Field intensities at the exit
boundary z=4
 for the cases with
the bilayer and without bilayer.
The bilayer lens has �1=4, �1=1,
�2=−4+0.008i and �2=−1
+0.008i and L1=L2=2
.
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FIG. 3. �Color online� �a� Electric field distri-
bution for a line current source Js=A	�z
+7 /3
�	�x� interacting with a Pendry’s lens �L

=−1+0.008i and �l=−1+0.008i; �b� Electric
field distribution when a dielectric cylinder is put
in the front of the lens; �c� Electric field distribu-
tion when the dielectric cylinder together with its
compensated cylinder are put outside and inside
the lens, respectively. �d� Field intensity at the
image plane z=13 /3
 for �a�, �b�, and �c�. The
dielectric cylinder has a radius of 2 /3
 with
the center at z=−
 and x=0, and a refractive
index of 2.

YAN, YAN, AND QIU PHYSICAL REVIEW B 79, 161101�R� �2009�

RAPID COMMUNICATIONS

161101-2



�2=−diag�� ,� ,1 /���1 and �2=−diag�� ,� ,1 /���1, as seen
from the above result. In this case, we notice that such an
indefinite bilayer is exactly the perfect lens made of the in-
definite media proposed by Smith et al.17,18

Now we give a explicit example of a homogenous bilayer
lens located at z� �0,4
� with �1=4, �1=1, �2=−4+0.008i,
and �2=−1+0.008i, where 
 is the operating wavelength.
The simulations are carried out with the finite-element
method �FEM� using the commercial COMSOL Multiphysics
package. Notice that in simulations presented in this Rapid
Communication, all material parameters smaller than 1 are
all given a small imaginary part of 0.008i. This small imagi-
nary part not only avoids the theoretical singularity problem,
but also physically represents losses possessed by realistic
metamaterails. The small loss values add a perturbation to
the ideal field relations governed by Eqs. �5� and �6�. The
perturbation however is kept very small so that the two equa-
tions are approximately satisfied. The electric field distribu-

tion for a line current source J̄s=A	�z+0.01
�	�x�ŷ interact-
ing with the bilayer is plotted in Fig. 2�a�. It is seen that the
EM field tunnels through the bilayer near perfectly, and an
almost perfect image is achieved at the exit boundary z=4
.
In Fig. 2�b�, the field intensity distribution as a function of
lateral position at the exit boundary z=4
 for both with and
without the bilayer are plotted for comparison. The image
constructed by the bilayer achieves a subwavelength reso-
lution with a full width at half maximum �FWHM� of 0.28
.
Whereas for the case without the bilayer, the field has de-
cayed significantly and appears featureless.

If the single slab in EM space is inhomogeneous, the cor-
responding transformed bilayer will be inhomogeneous too.
This hints that perfect image can be achieved even when
obstacles are obstructing the object to be imaged. To illus-
trate this idea, we consider that a dielectric cylindrical ob-
stacle, with a radius of 2 /3
 and a refractive index of 2, is
put at �x=0 z=
� just in front of a Pendry’s lens. The lens
has �L=−1+0.008i and �L=−1+0.008i, and is positioned at
z� �0,10 /3
�. The simulated electric field distribution for a

line current source J̄s=A	�z+7 /3
�	�x�ŷ interacting with the
lens and obstacle is plotted in Fig. 3�b�. In Fig. 3�a�, we also
plot the electric field distribution when the cylindrical ob-
stacle is absent. The Pendry’s lens is outlined by solid lines,
while dashed lines outline two bilayers. Comparing Figs.
3�a� and 3�b�, it is clearly seen that the images are distorted
by the obstacle since the up bilayer fails to transfer the field
perfectly. To overcome this problem, we embed an comple-
mentary cylinder inside the lens, which has a permittivity of
−4+0.008i and a permeability of −1+0.008i. The comple-
mentary cylinder is positioned symmetrically with the out-

side obstacle about z=0. Thus, the up bilayer works as a
self-compensating bilayer lens again. In Fig. 3�c�, we show
the electric field distribution when the complementary cylin-
der is added inside the lens. Two images are constructed
almost perfectly again. In Fig. 3�d�, the field intensity distri-
butions at the image plane z=13 /3
 for Figs. 3�a�–3�c� are
plotted. It is observed that the intensity curves for �a� and �c�
agree with each other quite well.

Next, we analyze the situation where active sources are
presented in the single layer in EM space. The transformed
bilayer thus contains twice the amount of the mapped
sources. The currents or changes of the mapped sources are
determined through Eqs. �3� and �4�. Here we assume that no
other sources are present in the background. EM fields are
therefore radiated only by the sources embedded in the bi-
layer. Thus, the power flows cross two boundaries z=a and
z=c should be in opposite directions, i.e., outward from the
bilayer. However, as discussed previously, tangential EM
fields at z=a and z=c boundaries are always the same, which
indicates that the power flows cross z=a and z=c should be
of the same value and with the same direction. The above
two conclusions are contradictory unless we acknowledge
that the power flows cross z=a and z=c are both zero. It
follows that no power flow propagates cross both z=a and
z=c. Therefore, EM fields outside the bilayer should be zero
or they are consisted of only evanescent components. How-
ever, if the fields outside the bilayer indeed are consisted of
evanescent components, they must decay in the same direc-
tion on both sides of the bilayer since the EM tangential
fields at two boundaries z=a and z=c have the identical val-
ues. This leads to infinite EM evanescent fields at z=−� or
z= +�, which is obviously unphysical. Hence, one comes to
the conclusion that the EM fields outside the bilayer are
completely zero. An outside observer can not see any source
embedded in the bilayer. As an example to illustrate
this statement, we consider that a bilayer is located at
z� �−2
 ,2
�, which has the same material parameters as in

Fig. 3�a�. Two line current sources J̄1=A	�x�	�z+1.9
�ŷ and

J̄2=−A	�x�	�z−1.9
�ŷ are embedded in layers I and II, re-
spectively. The simulated electric field distribution is plotted
in Fig. 4�a�. It is clearly seen that EM fields are nearly zero
outside the bilayer. For a comparison, we also plot the elec-

tric field distribution when J̄2=0 in Fig. 4�b�, where rela-
tively large fields outside the bilayer are observed.

Such a bilayer with active sources can be applied to de-
sign a perfect lens for achieving subwavelength imaging be-
yond active noise sources, even when the noise is much
stronger than the signal. To illustrate this idea, we consider
that a sheet current Js=4A	�x+z /6
� ,x� �−2
 ,2
� is put in
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FIG. 4. �Color online� Electric field distribu-

tion for �a� two current sources J̄1=A	�x�	�z
+1.9
�ŷ and J̄2=−A	�x�	�z−1.9
�ŷ embedded in

the bilayer; �b� only J̄1 is embedded in the bi-
layer. The bilayer lens has the same material
parameters as in Fig. 2.
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the front of the lens described in Fig. 5�a�. The correspond-
ing electric field distribution is plotted in Fig. 5�a�. It is seen
that the original clear images can not be distinguished any-
more due to the sheet source. To overcome this problem, we
embed a complementary sheet source within the lens to can-
cel out the outside noise source. The complementary source
and the outside noise are symmetrical about z=0, while their
phases have a � difference. The electric field distribution for
this case is plotted in Fig. 5�b�. Clear images re-emerge. In
Fig. 5�c�, we plot the field intensity distributions along the
image plane z=13 /3
 for both Figs. 5�a� and 5�b�. Also, the
field intensity at the image plane for Fig. 3�a� is imposed as
a reference. Clearly, the intensity curves for Figs. 5�b� and
3�a� agree with each other almost perfectly. The field cancel-
lation phenomenon suggests that we can design an energy
radiation switch by adjusting the phase of the source with the
help of a bilayer media based on coordinate transformation.

In conclusion, we studied bilayer slab structures obtained
by coordinate-transforming a single slab in EM space. The
tangential fields at the two boundaries of such a bilayer

structure have the same values, which is independent of the
background material or the existence of active sources in-
volved in the transformation. The transformed active sources
in the bilayer radiate no EM fields into the outside back-
ground. If the bilayer structure is put in a homogenous back-
ground, it will operate as a perfect tunneling lens, which
relays EM fields from one boundary to the other perfectly.
Considering the material parameters of the bilayer structure,
we find the perfect NIM lens, perfect indefinite media lens,
and complementary media are well unified under the system
of transformation optics. Based on this understanding, con-
structions of perfect bilayer lenses beyond passive and active
obstacles are demonstrated. We envision that the idea of bi-
layer slab lens can also be extended to design bilayer lenses
or compensated media in other geometries, such as
cylindrical19 and spherical ones.
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FIG. 5. �Color online� Electric field distribu-
tion when �a� a current sheet Js=4A	�x
+z /6
� ,x� �−2
 ,2
� is put in the front of the
lens of Fig. 3�a�; �b� the compensated current
sheet is put inside the lens. �c� Field intensity at
the image plane z=13 /3
 for �a�, �b�, and also
Fig. 3�a�.
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